skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spiro, Sam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract A family of sets is said to be an antichain if for all distinct , and it is said to be a distance‐ code if every pair of distinct elements of has Hamming distance at least . Here, we prove that if is both an antichain and a distance‐ code, then . This result, which is best‐possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood–Offord theory; for example, our result gives a short combinatorial proof of Hálasz's theorem, while all previously known proofs of this result are Fourier‐analytic. 
    more » « less
  3. Abstract Consider the following experiment: a deck with m copies of n different card types is randomly shuffled, and a guesser attempts to guess the cards sequentially as they are drawn. Each time a guess is made, some amount of ‘feedback’ is given. For example, one could tell the guesser the true identity of the card they just guessed (the complete feedback model) or they could be told nothing at all (the no feedback model). In this paper we explore a partial feedback model, where upon guessing a card, the guesser is only told whether or not their guess was correct. We show in this setting that, uniformly in n , at most $$m+O(m^{3/4}\log m)$$ cards can be guessed correctly in expectation. This resolves a question of Diaconis and Graham from 1981, where even the $m=2$ case was open. 
    more » « less
  4. Let $$H$$ and $$F$$ be hypergraphs. We say $$H$$ {\em contains $$F$$ as a trace} if there exists some set $$S \subseteq V(H)$$ such that $$H|_S:=\{E\cap S: E \in E(H)\}$$ contains a subhypergraph isomorphic to $$F$$. In this paper we give an upper bound on the number of edges in a $$3$$-uniform hypergraph that does not contain $$K_{2,t}$$ as a trace when $$t$$ is large. In particular, we show that $$\lim_{t\to \infty}\lim_{n\to \infty} \frac{\mathrm{ex}(n, \mathrm{Tr}_3(K_{2,t}))}{t^{3/2}n^{3/2}} = \frac{1}{6}.$$ Moreover, we show $$\frac{1}{2} n^{3/2} + o(n^{3/2}) \leqslant \mathrm{ex}(n, \mathrm{Tr}_3(C_4)) \leqslant \frac{5}{6} n^{3/2} + o(n^{3/2})$$. 
    more » « less
  5. null (Ed.)